Lunar Impacts Research

Da Sezione Luna - Unione Astrofili Italiani.
(Differenze fra le revisioni)
 
(106 revisioni intermedie di un utente non mostrate)
Riga 1: Riga 1:
====                                                               La ricerca, l'osservazione e la registrazione degli Impatti Lunari ====
+
===                                                                       First Candidate Lunar Impact record by SdR Luna UAI  ===
 +
 
 +
                                                                                                                           
 +
 
 +
                                                                                                                                      [[Image:Anigif 1.gif|center|Anigif 1.gif]]
 +
 
 +
=====                                                      In the animated image it is visible the sequence of impact flash, with the peak in the frame 2 and in decreasing luminosity in the frame 3  =====
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
On 12 March 2016 at 18h 33m 02s UT the members of Section Bruno Cantarella and Luigi Zanatta (Melazzo, AL, Italy, 44°39'25" North, 8°25'52" East) has recorded the first flash of impact of one meteoroid on the Lunar surface. The observation and the record has been made with one unique Newton telescope 200/1000 at f/5 with astronomical videocamera ZWO mod. ASI 120MM with a frame rate of 25 fps and image's resolution of 1024 X 600. Currently the Candidate Impact has been not confirmed by others indepedents observers. After the send of observatives data by the Lunar Impacts Project's Coordinator to NASA's Marshall Space Fligth Center, the American Team has valued in positive mode the obtained result and has classified the flash as Candidate Lunar Impact n° 28 in the list of Independent Observers. Also has been made by Dott. Alessandro Marchini Responsible of Astronomical Observatory of the University of Siena (Italy) a first light curve of impact flash that at the moment of the luminosity peak has been 250 units more bright than lunar surface around at the impact zone. The phenomenon it is lasted 0.08 seconds (1/12 sec.), and the impact zone has been detected at the selenographics coordinates of 39.9° West and 8.0° South +/-0.2°, in the southern&nbsp;zone of Oceanus Procellarum, and more precisely to South-West of the crater Wichmann B.&nbsp; &nbsp;
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
===== [[Image:Sequence 1.JPG|center|Sequence 1.JPG]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;The sequence of the impact flash obtained with analysis software LunarScan 2.00  =====
 +
 
 +
<br>
 +
 
 +
<br>
 +
 
 +
&nbsp;[[Image:Light curve of flash.jpg|center|Light curve of flash.jpg]]
 +
 
 +
===== &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;The light curve of the flash obtained with MaxIm DL5 software  =====
 +
 
 +
<br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<br>
 +
 
 +
==== &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ====
  
 
====  ====
 
====  ====
  
<br> Questo nuovo programma di ricerca avviato dalla Sezione di Ricerca Luna dell’Unione Astrofili Italiani consiste nel monitoraggio degli impatti lunari dovuti a meteoroidi provenienti dallo spazio esterno che vanno a colpire a forti velocità la superficie del nostro satellite naturale. La ricerca sugli impatti lunari ha avuto inizio in tempi molto recenti, e cioè quando in data 18 Novembre 1999 il sistema Terra-Luna stava attraversando lo sciame meteoritico delle Leonidi, Brian Cudnik osservò visualmente per la prima volta con la propria strumentazione il primo flash da impatto causato dalla caduta di un oggetto celeste sulla Luna, impatto che fu confermato e registrato su immagini anche da altri osservatori lunari indipendenti. Dopo questo primo evento ne seguirono in successione altri sei e confermati sempre da altri osservatori, aprendo così di fatto il percorso di un nuovo programma di ricerca a livello scientifico sul nostro satellite naturale. <br>Questo tipo di programma può avere una importante rilevanza scientifica in più punti, infatti registrando il flash che si forma al momento dell’impatto del meteoroide sulla superficie lunare, è possibile ottenere la magnitudine del flash stesso che si può ricavare dal confronto con la luminosità di stelle prese come campione e di cui è nota la magnitudine, e poi attraverso alcune funzioni matematiche è possibile stimare anche la massa di questi oggetti. Inoltre questo studio può essere anche utile per stimare la quantità di questi corpi "minori" che sono ancora presenti nello spazio esterno dove liberamente percorrono le proprie orbite, transitando molto spesso anche a distanze pericolosamente ravvicinate alla Terra, e in qualche caso alcuni di essi entrano in collisione con l’atmosfera terrestre. Il programma inoltre potrebbe assumere nel futuro un'altra rilevante valenza scientifica, e cioè per conoscere bene in quali zone lunari si verificano con il tempo una maggiore densità di impatti, questo sarebbe di vitale importanza per sapere in futuro con precisione dove poter costruire una eventuale base permanente lunare in una zona che possa essere a basso rischio di impatti, con il preciso scopo di salvaguardare l'integrità della struttura e degli astronauti che l'abiterebbero stabilmente. <br>La massa dei meteoroidi che cadono sulla superficie lunare può variare da un minimo di qualche decina di grammi fino ad arrivare a molte centinaia di kg, mentre le velocità di caduta sulla Luna sono comprese tra 20 e 72 km/sec questo in base alle orbite degli oggetti rispetto al sistema Terra-Luna. Questi meteoroidi possono avere origine da sciami cometari (meteoritici) che periodicamente diverse volte all’anno il sistema Terra-Luna attraversa, oppure da corpi asteroidali e sono quindi di tipo sporadico, ed è in questo secondo caso che la massa dei meteoroidi può assumere valori più importanti. Negli istanti immediatamente successivi all'impatto l'energia cinetica posseduta dal meteoroide viene impiegata quasi totalmente per scavare un nuovo cratere sul suolo lunare nel punto corrispondente di impatto e lanciare a distanza il materiale proveniente dalla superficie (ejecta), mentre solo una minima parte (circa 1%) si trasforma in luce visbile che può essere osservata dalla Terra come un fenomeno simile ad un flash che può avere una durata compresa tra 1/10 di secondo, e fino ad alcuni secondi nei casi di impatti più notevoli dovuti a meteoroidi che possiedono una massa molto più elevata.<br>Ia Sezione Luna svolge questo programma di ricerca in collaborazione con il [http://www.nasa.gov/centers/marshall/news/lunar/ NASA Marshall Space Flight Center] che svolge a livello professionale l’osservazione degli impatti lunari, e che ha inoltre il compito di raccogliere tutte le osservazioni dei candidati flash da impatto provenienti dagli osservatori lunari sparsi in tutto il mondo. La stessa collaborazione è inoltre stata avviata con le Sezioni Luna dell'inglese [http://www.baalunarsection.org.uk/tlp.htm British Astronomical Association] (BAA) e della statunitense [http://alpo-astronomy.org/ Association Lunar &amp; Planetary Observer] (ALPO).<br>La Sezione Luna UAI ha collaborato inoltre nel periodo Novembre 2013 - Aprile 2014 sempre con la NASA per la missione [http://www.nasa.gov/mission_pages/ladee/main/index.html NASA - LADEE] (Lunar Atmosphere and Dust Environment Explorer) per la ricerca degli impatti lunari. Infatti questa sonda spaziale statunitense sviluppata interamente nel centro ricerche NASA di Ames in California fra i diversi scopi scientifici, ha avuto il compito di rilevare tramite lo strumento LDEX l'eventuale presenza di polveri lunari presenti nell'esosfera lunare e che secondo dei modelli teorici proverrebbero dalla superficie del nostro satellite dopo essere state lanciate nel cielo lunare in seguito all'impatto di meteoroidi.<br>Per poter riprendere gli impatti lunari è necessario osservare la parte di Luna che non è illuminata dal Sole e quindi va monitorata la parte in ombra, ed i periodi favorevoli per poter osservare questi fenomeni sono dal primo giorno dopo la fase di Luna Nuova fino al giorno di Primo Quarto compreso (in questo caso si osserva la parte lunare Ovest che sarà in ombra, ed effettuando le osservazioni principalmente nelle zone più vicine al lembo Ovest, Fig.2), e poi dal giorno di Ultimo Quarto compreso fino al giorno prima della fase di Luna Nuova (in questo caso andrà osservata la parte lunare Est in ombra sempre con la stessa metodologia, Fig.1), questo perchè le zone dove si verificano maggiormente gli impatti sono situate in prossimità dei lembi lunari Ovest ed Est. Le due figure sotto riportate illustrano all'interno di un rettangolo di colore rosso le zone lunari che dovrebbero essere riprese dal sensore della videocamera impiegata per le osservazioni. Oltre alla superficie lunare può essere utile riprendere anche una piccola zona del fondo cielo al di fuori dei lembi lunari come illustrato nelle due figure, questo per avere sempre un punto di riferimento fisso.<br><br> <br> <br> [[Image:Fov ovest 2.jpg|right|400x300px|Fov ovest 2.jpg]] [[Image:Fov est 2.jpg|left|400x300px|Fov est 2.jpg]] <br> <br> <br> <br>  
+
====  ====
 +
 
 +
=== &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;The Research, Observation and Recording of Lunar Impacts  ===
 +
 
 +
====  ====
 +
 
 +
<br>This is new programme that has been started by the Lunar Section Research of Unione Astrofili Italiani (UAI), and consists of monitoring the Moon’s night side for Impact flashes that occur when meteoroids, in the Solar System, strike the lunar surface at high velocity. The research on Lunar Impacts started only recently, when on November 18, 1999, the orbit of the Earth-Moon system intersected the Leonids meteor shower orbit. On that date, Brian Cudnik was the first person to observe this phenomena visually, through his telescope, i.e. the flash of light when one object in the solar system collides with the surface of another, and this event was confirmed, and recorded on video, by other independent lunar observers. After this first impact flash, there followed in succession six other impact flashes, always confirmed by independent observers, and this opened up a new scientific way to carry out research into impact rates on our natural satellite. This type of programme is important scientifically for a number of reasons, for example if we measure the brightness of the flash and compare it to that of stars near to the limb of the Moon, then we can obtain the magnitude of the flash, and from this determine the emitted energy of the impact. If the meteoroid is from a known shower, and of known velocity, then its mass can be calculated too.<br> This study can be very useful in detemining the quantity of “minor bodies” that pass near to the Earth, and to calibrate this with other methods, for example meteor/meteorite rates detected in the Earth’s atmosphere. The programme could have a really important scientific significance for future lunar exploration too, i.e. to be able to know the present day lunar impact rate and how this varies across the lunar surface would be essential to know about in the design of future lunar bases, and also where they should be situated, in order to minimize impact damage. <br><br>The mass of meteoroids that fall on lunar surface can vary between some tens of grams and 10 - 20 kilograms about, while the velocity of impact is between 20 and 72 km/second. These meteoroids can originate from cometary showers that periodically cross the orbit of the Earth-Moon system, or from asteroidal bodies that are more sporadic in nature, and it is this second case that the mass of meteoroids have more significance to the safe design of lunar bases. In the instance immediately after an impact, less than one percent of the total kinetic energy released from the impact, is transformed into visible light that Earth based observers can see in the form of short flashes. These flashes can last from typically less than 1/10th of a second to very occasionally a few seconds for the largest bodies to hit the Moon. After the impact the meteoroid disintegrates and a new, metre scale, crater forms. <br>The UAI Lunar Section undertakes this research programme in collaboration with the [http://www.nasa.gov/centers/marshall/news/lunar/ NASA Marshall Space Flight Center]&nbsp;who, at professional level, catalogue all observations of Lunar Impacts provided by lunar observers sparse in all the world. Another collaboration has also been started with the Lunar Section’s of [http://www.baalunarsection.org.uk/tlp.htm British Astronomical Association] (BAA) and the american&nbsp;[http://alpo-astronomy.org/ Association Lunar &amp; Planetary Observer] (ALPO).<br>The UAI Lunar Section had collaboration, in the period November 2013 – April 2014, with &nbsp;[http://www.nasa.gov/mission_pages/ladee/main/index.html NASA's LADEE]&nbsp;mission (Lunar Atmosphere and Dust Environment Explorer)&nbsp;for research into Lunar Impacts. Although this american spacecraft, developed in the NASA’s Research Center of Ames, CA, could not detect impact flashes directly, LADEE’s LDEX instrument was able to detect the possible presence of dust in lunar exosphere. So by comparing impact flashes, detected by Earth-based astronomers, with dust levels in the exosphere, theoretical models of lunar impact lofted dust can be tested/improved.
 +
 
 +
To be able to look for Lunar Impacts, the observer should study the non-illuminated (night) part of the Moon, by monitoring earthshine. Favourable periods to observe are from the first day after the New Moon and until First Quarter (in this case monitor the West side that is in earthshine Fig.2), and then from the day of Last Quarter until at the day before New Moon (in this case monitoring the East side in earthshine Fig.1). In both cases one can optimize the chances of detecting impacts if the observer includes the limb region in the field of view, because it is here that there is a greater density of impact visible from Earth. The two pictures shown below, illustrate with red rectangles, the typical fields of view and areas to cover of lunar Earthshine. Note that it is useful to include a little of the sky background in the field of view – this has two purposes: firstly it can record stars which are useful to calibrate flash magnitudes, and secondly the lunar limb can act as a datum for measuring the positions of flash against.<br><br> <br> <br> [[Image:Fov ovest 2.jpg|right|400x300px|Fov ovest 2.jpg]] [[Image:Fov est 2.jpg|left|400x300px|Fov est 2.jpg]] <br> <br> <br> <br>  
 
<div><br></div>  
 
<div><br></div>  
 
<br> <br> <br> <br>  
 
<br> <br> <br> <br>  
Riga 17: Riga 59:
 
<br>  
 
<br>  
  
Fig.1 - Ripresa del settore lunare Est dopo la fase di Ultimo Quarto &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Fig.2 - Ripresa del settore lunare Ovest dopo la fase di Luna Nuova &nbsp;  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig.1 - Take of East edge after the phase of Last Quarter &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Fig.2 - Take of West edge after the phase of New Moon &nbsp; &nbsp;  
  
 
<br>  
 
<br>  
  
<br> <br> La strumentazione consigliata per la ricerca consiste in una montatura motorizzata che possa inseguire quanto più perfettamente possibile la Luna, (dove prevista inserire la velocità lunare) e come strumento un telescopio avente un diametro di almeno 20 cm (8”) con basso rapporto focale come f/5 o f/3,3 questo per poter riprendere un campo di zona lunare quanto più ampio possibile (Fig.3 e 4) e allo stesso tempo aumentare la luminosità dello strumento. <br> <br> <br><br>[[Image:Campo bruno.jpg|center|640x480px|Campo bruno.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig.3 - immagine del lato buio Ovest lunare ripresa con newton 1000/200 ad f/5 e videocamera ASI 120MM da Bruno Cantarella (AL)  
+
<br> <br>The ideal instrumentation for the research of Lunar Impacts is a telescope with a motorized mount (both axes) that can to follow the Moon as perfectly as possible (where it is possible to select tracking rate at lunar velocity). The telescope aperture should have a diameter of at least 8”, with a small focal ratio, e.g. f/5 or f/3.3, - this is to enable a sufficiently large lunar field of view, (Fig.3 e 4) and at the same time to increase the sensitivity of the telescope-camera system. <br> <br> <br><br>[[Image:Campo bruno.jpg|center|640x480px|Campo bruno.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig.3 - Image of earthshine West edge take with newton telescope 1000/200 at f/5 and videocamera ASI 120MM by Bruno Cantarella (AL)  
  
 
<br>  
 
<br>  
  
&nbsp;[[Image:Earthshine f3,3 mio.png|center|640x400px|Earthshine f3,3 mio.png]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Fig.4 - immagine del lembo buio Ovest lunare ripresa con Celestron C8 ad f/3,3 e ASI 120MM da Antonio Mercatali (LI)<br>  
+
&nbsp;[[Image:Earthshine f3,3 mio.png|center|640x400px|Earthshine f3,3 mio.png]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Fig.4 - Image of earthshine West edge take with telescope Celestron C8 at f/3,3 and always with ASI 120MM by Antonio Mercatali (LI)<br>  
  
 
<br>  
 
<br>  
  
<br> Come apparecchi di ripresa dedicati possono essere impiegate delle moderne videocamere per astronomia con presa USB di ultima generazione da collegare al proprio computer ad una porta USB 2.0 e che possano produrre dei filmati in file AVI. Le videocamere devono inoltre possedere una buona sensibilità alle basse intensità luminose per poter riprendere con sufficiente contrasto rispetto al fondo cielo la parte in ombra della Luna (la cosidetta luce cinerea), ed è di notevole importanza cercare di riprendere anche quanto più possibile le formazioni sottostanti lunari che sono in ombra con lo scopo di poter individuare la posizione selenografica di un eventuale flash da impatto. Le videocamere vanno impostate con un tempo di esposizione di almeno 0,030 sec (1/30 sec) per poter ottenere una velocità di ripresa (frame rate) di 30 fps (frame per secondo), questo perchè la maggior parte dei flash da impatto hanno una durata media di 1/10 di secondo, e quindi è importante registrare il candidato flash da impatto almeno in 2 o 3 frame consecutivi per registrare dopo l'intensità di picco del flash anche la diminuizione dell’intensità luminosa in funzione del tempo. Inoltre è di fondamentale importanza che il sospetto flash da impatto resti sempre fisso nella stessa posizione in tutti i frame in cui esso compare, cioè in pratica il flash deve accendere sempre gli stessi pixel del sensore dell’apparecchio di ripresa usato. Molto spesso vengono ripresi dei fenomeni che possono sembrare simili a dei flash da impatto ma che invece sono semplicemente dei raggi cosmici temporanei che appaiono e scompaiono in tempi rapidissimi ma che lasciano comunque una traccia sul sensore e quindi sono visibili solo in un frame (Fig.5 e 6). Inoltre durante le riprese è possibile riprendere anche dei satelliti artificiali terrestri che attraversano il disco lunare, ed in questo caso essi si presentano come delle striscie luminose molto veloci (Fig.7), oppure anche come dei punti luminosi simili ad un flash ma che si spostano attraverso il campo lunare ripreso per poi scomparire. Per poter verificare se il fenomeno ripreso è un satellite artificiale è possibile consultare il sito web di [http://www.heavens-above.com/ Heavens–Above] oppure quello di [https://www.calsky.com/cs.cgi/Satellites?obs=75110716100698 Calsky]. Il Marshall Space Flight Center della NASA ha stabilito delle condizioni precise perchè un candidato flash da impatto registrato da un osservatore lunare possa essere considerato come un reale impatto lunare, per maggiori informazioni [http://www.nasa.gov/centers/marshall/news/lunar/independent_impact_candidates.html cliccare qui] <br> <br>  
+
<br>Suggested apparatus for video capture can include modern astronomical video cameras, with USB connections to a computer, however they must be capable of recording video filmed in AVI file format. These videocameras must also have a good sensitivity at low light levels, such that there is sufficient contrast between the sky background, and the night (earthlit) side of the Moon. The camera sensitivity must be able to discern at least some recognizable features in Earthshine too, for the purpose of being able to detemine the map coordinates of the possible impact flashes. The time of each exposure should be set at shorter than 0.033 seconds (1/30 sec) if working at a frame rate of 30 fps; this is necessary because large numbers of lunar impacts have a flash durations of less than 1/10 sec, and so therefore it is important to record suspect flash impact flashes in at least two or three consecutive frames, and to be able to record both the flash luminosity peak as well as the decay of light curve as a function of time. Also it is of fundamental importance that the impact flash remains always fixed in the same position in all frames where it is visible, i.e. the flash must always light the same pixels of the sensor of the astronomical video camera used – so a tracking telescope is recommended. Not all candidate flashes seen are due to real impacts, the majority of flashes detected are in fact the result of cosmic rays air shower particles, that strike the camera, and appear and disappear in a very short time. However these cosmic rays usually create very bright points (and tracks) on the sensor and are visible in only one frame (Fig. 5 and 6). Also during the taking of video some terrestrial satellites can cross the lunar disk, and in this case they can appear as motion blurred streaks (Fig.7), or the slower ones appear as a moving bright spots across the lunar field. One way to check for satellites is to consult the web site of &nbsp;[http://www.heavens-above.com/ Heavens–Above] or&nbsp;[https://www.calsky.com/cs.cgi/Satellites?obs=75110716100698 Calsky].&nbsp;NASA’s Marshall Space Flight Center developed some criteria for classifying the quality of candidate impact flash observations, for more information [http://www.nasa.gov/centers/marshall/news/lunar/independent_impact_candidates.html click here]. <br> <br>  
  
 
<br>  
 
<br>  
  
<br>[[Image:Ray cosmic 1.jpg|center|640x400px|Ray cosmic 1.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig.5 - Probabile raggio cosmico ripreso dalla videocamera (indicato dal cerchio rosso), immagine di Antonio Mercatali (LI)<br>  
+
<br>[[Image:Ray cosmic 1.jpg|center|640x400px|Ray cosmic 1.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Fig.5 - Probable cosmic ray take from videocamera (indicate from a red circle), image by Antonio Mercatali (LI)<br>  
  
 
<br>  
 
<br>  
  
<br><br>[[Image:Ray cosmic 2.jpg|center|640x400px|Ray cosmic 2.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Fig.6 - Anche in questa immagine ci sono dei probabili raggi cosmici (sempre indicati dai cerchi rossi), immagine di Antonio Mercatali (LI)&nbsp;<br> <br>  
+
<br><br>[[Image:Ray cosmic 2.jpg|center|640x400px|Ray cosmic 2.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig.6 - In this image too there are probables cosmics rays (indicate always from reds circles), image by Antonio Mercatali (LI)&nbsp;<br> <br>  
  
 
<br>  
 
<br>  
  
<br><br>[[Image:25012015 175038TU.jpg|center|640x480px|25012015 175038TU.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig. 7 - Il satellite cinese HJ-1C ripreso da Bruno Cantarella (Melazzo, AL) il 25/1/2015 alle ore 17:50:38 T.U. &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;mentre attraversa il disco lunare. Verifica effettuata da Aldo Tonon (TO) dal sito Heavens-Above &nbsp;<br> <br> <br> <br> <br> Eventuali registrazioni di potenziali flash da impatto e/o report osservativi visuali possono essere inviati all'indirizzo della Sezione Luna [mailto:luna@uai.it luna@uai.it] in forma di immagini JPEG e in formato pdf per i rapporti osservativi visuali, i quali però dovranno essere sempre in entrambi i casi completi della data ed orario in Tempo Universale (T.U.) del momento in cui si è osservato e/o registrato il fenomeno. <br><br> '''Il Coordinatore del progetto è Antonio Mercatali.'''<br><br> <br>
+
<br><br>[[Image:25012015 175038TU.jpg|center|640x480px|25012015 175038TU.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Fig. 7 - The chinese artificial satellite HJ-1C take by Bruno Cantarella (Melazzo, AL) on 1/25/2015 at 17:50:38 UT &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;while crossed the lunar disk. Check made by Aldo Tonon (TO) from Heavens-Above website &nbsp;<br> <br> <br> <br> <br>Captured image frames of candidate impact flashes, or any visual sightings, should be sent to the following e-mail address of the UAI Lunar Section [mailto:luna@uai.it luna@uai.it]&nbsp;as JPEG images, or in PDF format for the visual observational reports. Please make sure that you always include the date and the time in UT for the suspected impact flash.  
  
<br>  
+
Many thanks to Dr Anthony Cook, Department of Physics,&nbsp;Aberystwyth University for the english revision of this page.&nbsp;<br><br>'''The project’s Coordinator is &nbsp;Antonio Mercatali.'''<br><br> <br>  
  
<br>  
+
==== <br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;'''Ideal monthly dates for the observation and record of the Lunar Impacts'''  ====
  
<br>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;'''Orari per l'osservazione per il mese di Giugno 2015'''&nbsp;<br> <br> '''Luna in fase calante, osservazione del lembo buio Est''' con inizio delle osservazioni dal sorgere della Luna e fino all’arrivo della luce dell’alba:<br>  
+
<br>It is possible to make the record for the research of these impacts phenomenon during the phase of increasing Moon by monitoring the West lunar edge not illuminate, in the days when the Moon it is illuminate by the sunlight with a percentual between the 10% and 50% (until First Quart), with the start of observations from evening twilight to moonset.<br>During the phase of decreasing Moon also it is possible to repeate the videoimagery for the research of possible impacts by monitoring the East lunar edge not illuminate, in the days when the Moon it is illuminate by the sunlight with a percentual between the 50% (Last Quarter) and 10%, with the start of observations from moonrise to morning twilight.<br>For to consult the lunar ephemerides of February for the dates of the principal lunar phases of specific reference for the impacts observation (New Moon, First and Last Quarter), for the percentual of Moon’s illumination, and the times of the moonset and moonrise, to consult the SdR Luna website at this page http://luna.uai.it/index.php/Effemeridi_del_mese .<br><br>  
  
- &nbsp;9 la Luna sorge alle ore 23:04 T.U. del giorno 8<br>- 10 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; “ &nbsp; &nbsp; &nbsp; &nbsp;alle ore 23:39 T.U. del giorno 9 <br>- 11 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; “ &nbsp; &nbsp; &nbsp; &nbsp;alle ore 00:14 T.U.<br>- 12 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; “ &nbsp; &nbsp; &nbsp; &nbsp;alle ore 00.49 T.U.<br>- 13 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; “ &nbsp; &nbsp; &nbsp; &nbsp;alle ore 01:27 T.U.<br>- 14 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; “ &nbsp; &nbsp; &nbsp; &nbsp;alle ore 02:08 T.U.<br>- 15 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; “ &nbsp; &nbsp; &nbsp; &nbsp;alle ore 02:53 T.U.<br><br><br><br><br> '''Luna in fase crescente, osservazione del lembo buio Ovest''' con inizio delle osservazioni da quando fa buio e fino al tramonto della Luna:<br>  
+
<br>  
  
- 17 la Luna tramonta alle ore 19:24 T.U.<br>- 18 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 20:09 T.U. <br>- 19 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 20.49 T.U.<br>- 20 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 21.24 T.U.<br>- 21 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 21.55 T.U.<br>- 22 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 22:25 T.U.<br>- 23 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 22.53 T.U.<br>- 24 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;“ &nbsp; &nbsp; &nbsp; &nbsp; alle ore 23:21 T.U. <br>
+
<br>  
 +
 
 +
----
  
 
<br>  
 
<br>  
  
<br><br><br><br><br> [[Image:Logo SdR Luna.jpg|center|134x126px|Logo SdR Luna.jpg]]&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Sezione di Ricerca Luna'''
+
&nbsp;[[Image:Logo SdR Luna.jpg|center|134x126px|Logo SdR Luna.jpg]]  
 +
 
 +
==== &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Sezione di Ricerca Luna ====

Versione attuale delle 19:46, 1 feb 2017

Indice

                                                                      First Candidate Lunar Impact record by SdR Luna UAI

                                                                                                                           

                                                                                                                                      
Anigif 1.gif
                                                     In the animated image it is visible the sequence of impact flash, with the peak in the frame 2 and in decreasing luminosity in the frame 3



On 12 March 2016 at 18h 33m 02s UT the members of Section Bruno Cantarella and Luigi Zanatta (Melazzo, AL, Italy, 44°39'25" North, 8°25'52" East) has recorded the first flash of impact of one meteoroid on the Lunar surface. The observation and the record has been made with one unique Newton telescope 200/1000 at f/5 with astronomical videocamera ZWO mod. ASI 120MM with a frame rate of 25 fps and image's resolution of 1024 X 600. Currently the Candidate Impact has been not confirmed by others indepedents observers. After the send of observatives data by the Lunar Impacts Project's Coordinator to NASA's Marshall Space Fligth Center, the American Team has valued in positive mode the obtained result and has classified the flash as Candidate Lunar Impact n° 28 in the list of Independent Observers. Also has been made by Dott. Alessandro Marchini Responsible of Astronomical Observatory of the University of Siena (Italy) a first light curve of impact flash that at the moment of the luminosity peak has been 250 units more bright than lunar surface around at the impact zone. The phenomenon it is lasted 0.08 seconds (1/12 sec.), and the impact zone has been detected at the selenographics coordinates of 39.9° West and 8.0° South +/-0.2°, in the southern zone of Oceanus Procellarum, and more precisely to South-West of the crater Wichmann B.   




Sequence 1.JPG
                                                                                             The sequence of the impact flash obtained with analysis software LunarScan 2.00



 
Light curve of flash.jpg
                                                                                                             The light curve of the flash obtained with MaxIm DL5 software


                                                                                                                                                                                                                                       

                                                                               

                                                             The Research, Observation and Recording of Lunar Impacts


This is new programme that has been started by the Lunar Section Research of Unione Astrofili Italiani (UAI), and consists of monitoring the Moon’s night side for Impact flashes that occur when meteoroids, in the Solar System, strike the lunar surface at high velocity. The research on Lunar Impacts started only recently, when on November 18, 1999, the orbit of the Earth-Moon system intersected the Leonids meteor shower orbit. On that date, Brian Cudnik was the first person to observe this phenomena visually, through his telescope, i.e. the flash of light when one object in the solar system collides with the surface of another, and this event was confirmed, and recorded on video, by other independent lunar observers. After this first impact flash, there followed in succession six other impact flashes, always confirmed by independent observers, and this opened up a new scientific way to carry out research into impact rates on our natural satellite. This type of programme is important scientifically for a number of reasons, for example if we measure the brightness of the flash and compare it to that of stars near to the limb of the Moon, then we can obtain the magnitude of the flash, and from this determine the emitted energy of the impact. If the meteoroid is from a known shower, and of known velocity, then its mass can be calculated too.
This study can be very useful in detemining the quantity of “minor bodies” that pass near to the Earth, and to calibrate this with other methods, for example meteor/meteorite rates detected in the Earth’s atmosphere. The programme could have a really important scientific significance for future lunar exploration too, i.e. to be able to know the present day lunar impact rate and how this varies across the lunar surface would be essential to know about in the design of future lunar bases, and also where they should be situated, in order to minimize impact damage.

The mass of meteoroids that fall on lunar surface can vary between some tens of grams and 10 - 20 kilograms about, while the velocity of impact is between 20 and 72 km/second. These meteoroids can originate from cometary showers that periodically cross the orbit of the Earth-Moon system, or from asteroidal bodies that are more sporadic in nature, and it is this second case that the mass of meteoroids have more significance to the safe design of lunar bases. In the instance immediately after an impact, less than one percent of the total kinetic energy released from the impact, is transformed into visible light that Earth based observers can see in the form of short flashes. These flashes can last from typically less than 1/10th of a second to very occasionally a few seconds for the largest bodies to hit the Moon. After the impact the meteoroid disintegrates and a new, metre scale, crater forms.
The UAI Lunar Section undertakes this research programme in collaboration with the NASA Marshall Space Flight Center who, at professional level, catalogue all observations of Lunar Impacts provided by lunar observers sparse in all the world. Another collaboration has also been started with the Lunar Section’s of British Astronomical Association (BAA) and the american Association Lunar & Planetary Observer (ALPO).
The UAI Lunar Section had collaboration, in the period November 2013 – April 2014, with  NASA's LADEE mission (Lunar Atmosphere and Dust Environment Explorer) for research into Lunar Impacts. Although this american spacecraft, developed in the NASA’s Research Center of Ames, CA, could not detect impact flashes directly, LADEE’s LDEX instrument was able to detect the possible presence of dust in lunar exosphere. So by comparing impact flashes, detected by Earth-based astronomers, with dust levels in the exosphere, theoretical models of lunar impact lofted dust can be tested/improved.

To be able to look for Lunar Impacts, the observer should study the non-illuminated (night) part of the Moon, by monitoring earthshine. Favourable periods to observe are from the first day after the New Moon and until First Quarter (in this case monitor the West side that is in earthshine Fig.2), and then from the day of Last Quarter until at the day before New Moon (in this case monitoring the East side in earthshine Fig.1). In both cases one can optimize the chances of detecting impacts if the observer includes the limb region in the field of view, because it is here that there is a greater density of impact visible from Earth. The two pictures shown below, illustrate with red rectangles, the typical fields of view and areas to cover of lunar Earthshine. Note that it is useful to include a little of the sky background in the field of view – this has two purposes: firstly it can record stars which are useful to calibrate flash magnitudes, and secondly the lunar limb can act as a datum for measuring the positions of flash against.



Fov ovest 2.jpg
Fov est 2.jpg














         Fig.1 - Take of East edge after the phase of Last Quarter                                                                                                                             Fig.2 - Take of West edge after the phase of New Moon    




The ideal instrumentation for the research of Lunar Impacts is a telescope with a motorized mount (both axes) that can to follow the Moon as perfectly as possible (where it is possible to select tracking rate at lunar velocity). The telescope aperture should have a diameter of at least 8”, with a small focal ratio, e.g. f/5 or f/3.3, - this is to enable a sufficiently large lunar field of view, (Fig.3 e 4) and at the same time to increase the sensitivity of the telescope-camera system.



Campo bruno.jpg
                                                   Fig.3 - Image of earthshine West edge take with newton telescope 1000/200 at f/5 and videocamera ASI 120MM by Bruno Cantarella (AL)


 
Earthshine f3,3 mio.png
                                                    Fig.4 - Image of earthshine West edge take with telescope Celestron C8 at f/3,3 and always with ASI 120MM by Antonio Mercatali (LI)



Suggested apparatus for video capture can include modern astronomical video cameras, with USB connections to a computer, however they must be capable of recording video filmed in AVI file format. These videocameras must also have a good sensitivity at low light levels, such that there is sufficient contrast between the sky background, and the night (earthlit) side of the Moon. The camera sensitivity must be able to discern at least some recognizable features in Earthshine too, for the purpose of being able to detemine the map coordinates of the possible impact flashes. The time of each exposure should be set at shorter than 0.033 seconds (1/30 sec) if working at a frame rate of 30 fps; this is necessary because large numbers of lunar impacts have a flash durations of less than 1/10 sec, and so therefore it is important to record suspect flash impact flashes in at least two or three consecutive frames, and to be able to record both the flash luminosity peak as well as the decay of light curve as a function of time. Also it is of fundamental importance that the impact flash remains always fixed in the same position in all frames where it is visible, i.e. the flash must always light the same pixels of the sensor of the astronomical video camera used – so a tracking telescope is recommended. Not all candidate flashes seen are due to real impacts, the majority of flashes detected are in fact the result of cosmic rays air shower particles, that strike the camera, and appear and disappear in a very short time. However these cosmic rays usually create very bright points (and tracks) on the sensor and are visible in only one frame (Fig. 5 and 6). Also during the taking of video some terrestrial satellites can cross the lunar disk, and in this case they can appear as motion blurred streaks (Fig.7), or the slower ones appear as a moving bright spots across the lunar field. One way to check for satellites is to consult the web site of  Heavens–Above or Calsky. NASA’s Marshall Space Flight Center developed some criteria for classifying the quality of candidate impact flash observations, for more information click here.



Ray cosmic 1.jpg
                                                                          Fig.5 - Probable cosmic ray take from videocamera (indicate from a red circle), image by Antonio Mercatali (LI)




Ray cosmic 2.jpg
                                                             Fig.6 - In this image too there are probables cosmics rays (indicate always from reds circles), image by Antonio Mercatali (LI) 




25012015 175038TU.jpg
                                                                         Fig. 7 - The chinese artificial satellite HJ-1C take by Bruno Cantarella (Melazzo, AL) on 1/25/2015 at 17:50:38 UT                                                                                                                                                          while crossed the lunar disk. Check made by Aldo Tonon (TO) from Heavens-Above website  




Captured image frames of candidate impact flashes, or any visual sightings, should be sent to the following e-mail address of the UAI Lunar Section luna@uai.it as JPEG images, or in PDF format for the visual observational reports. Please make sure that you always include the date and the time in UT for the suspected impact flash.

Many thanks to Dr Anthony Cook, Department of Physics, Aberystwyth University for the english revision of this page. 

The project’s Coordinator is  Antonio Mercatali.



                                                                     Ideal monthly dates for the observation and record of the Lunar Impacts


It is possible to make the record for the research of these impacts phenomenon during the phase of increasing Moon by monitoring the West lunar edge not illuminate, in the days when the Moon it is illuminate by the sunlight with a percentual between the 10% and 50% (until First Quart), with the start of observations from evening twilight to moonset.
During the phase of decreasing Moon also it is possible to repeate the videoimagery for the research of possible impacts by monitoring the East lunar edge not illuminate, in the days when the Moon it is illuminate by the sunlight with a percentual between the 50% (Last Quarter) and 10%, with the start of observations from moonrise to morning twilight.
For to consult the lunar ephemerides of February for the dates of the principal lunar phases of specific reference for the impacts observation (New Moon, First and Last Quarter), for the percentual of Moon’s illumination, and the times of the moonset and moonrise, to consult the SdR Luna website at this page https://luna.uai.it/index.php/Effemeridi_del_mese .





 
Logo SdR Luna.jpg

                                                                                                                       Sezione di Ricerca Luna

Strumenti personali
Namespace
Varianti
Azioni
SdR LUNA UAI
Alta risoluzione
CAMPAGNE OSSERVATIVE
RICERCA SCIENTIFICA
EDITORIA
Navigazione 
Strumenti